Measure pseudo almost periodic solution for a class of nonlinear delayed stochastic evolution equations driven by Brownian motion

نویسندگان

چکیده

In this work, we present a new concept of measure-ergodic process to define the space measure pseudo almost periodic in p-th mean sense. We show some results regarding completeness, composition theorems and invariance consisting process. Motivated by above mentioned results, Banach fixed point theorem stochastic analysis techniques, prove existence, uniqueness global exponential stability doubly mild solution for class nonlinear delayed evolution equations driven Brownian motion separable real Hilbert space. provide an example illustrate effectiveness our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measure-Dependent Stochastic Nonlinear Beam Equations Driven by Fractional Brownian Motion

We study a class of nonlinear stochastic partial differential equations arising in themathematical modeling of the transversemotion of an extensible beam in the plane. Nonlinear forcing terms of functional-type and those dependent upon a family of probability measures are incorporated into the initial-boundary value problem (IBVP), and noise is incorporated into the mathematical description of ...

متن کامل

On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays

In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory

متن کامل

Stochastic Differential Equations Driven by a Fractional Brownian Motion

We study existence, uniqueness and regularity of some sto-chastic diierential equations driven by a fractional Brownian motion of any Hurst index H 2 (0; 1): 1. Introduction Fractional Brownian motion and other longgrange dependent processes are more and more studied because of their potential applications in several elds like telecommunications networks, nance markets, biology and so on The ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2102515b